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Abstract. A novel approach to the investigation of correlation effects in the electronic structure of
magnetic crystals which takes into account a frequency dependence of the self-energy (the so-called
‘LDA++ approach’) is developed. The fluctuation-exchange approximation is generalized to the
spin-polarized multi-band case and a local version of it is proposed. As an example, we calculate
the electronic quasiparticle spectrum of ferromagnetic iron. It is shown that the Fermi-liquid
description of the bands near the Fermi level is reasonable, while the quasiparticle states beyond
approximately the 1 eV range are strongly damped, in agreement with photoemission data. The
result of the spin-polarized thermoemission experiment is explained satisfactorily. The problem of
satellite structure is discussed.

1. Introduction

The description of the correlation effects in the electronic structure and magnetism of iron-
group metals is still far from being a definitive picture and continues to attract interest (see, e.g.,
[1–4] and references therein). Despite the many attempts to remedy this, the situation is still
unclear both theoretically and experimentally. For example, there is no agreement as regards
whether a 5 eVsatellite is present in the photoemission spectrum of iron [5, 6], or whether
there is a local spin splitting above the Curie temperature of nickel [7]. The experimental
data on the absence of spin polarization in the thermoemission from caesiated iron [8] are
still not understood completely [9]. On the theoretical side, different approaches such as the
second-order perturbation theory [3,10], the three-body Faddeev approximation [11], and the
moment expansion method [12] have been used. Unfortunately, the conditions of applicability
of these schemes are not clear. Recently, we investigated different approximations to the
LDA-based correlated electronic structure of crystals using a local self-energy [13] (the so-
called ‘LDA++’ approach) and argued that for moderately strong correlations (such as are
encountered in the case of iron-group metals) one of the most efficient approaches would be
to use the fluctuation-exchange (FLEX) approximation of Bickers and Scalapino [14]. Here
we generalize the LDA++ approach [13] to the spin-polarized case and present some results
for the quasiparticle spectrum of ferromagnetic iron.

2. The spin-polarized multi-band FLEX approximation

Let us start with the general many-body Hamiltonian for crystal in the LDA +U scheme [15]:

H = Ht +HU (1)
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where

Ht =
∑
λλ′σ

tλλ′c
+
λσ cλ′σ

HU = 1

2

∑
{λi }σσ ′

〈λ1λ2 |v| λ′1λ′2〉c+
λ1σ
c+
λ2σ ′cλ

′
2σ
′cλ′1σ

where theλ = im are the site-number(i) and orbital(m) quantum numbers;σ = ↑,↓ is
the spin projection;c+, c are the Fermi creation and annihilation operators;Ht is the effective
single-particle Hamiltonian obtained from the LDA, corrected for double counting of average
interactions among correlated electrons [13,15]; and the Coulomb matrix elements are defined
in the standard way:

〈12|v| 34〉 =
∫

dr dr′ ψ∗1 (r)ψ
∗
2 (r
′)v(r − r′)ψ3(r)ψ4(r

′) (2)

where we define for brevityλ1 ≡ 1 etc. Following Bickers and Scalapino [14], we introduce
the pairwise operators corresponding to different channels, namely:

(i) the particle–hole density:

d12 = 1√
2
(c+

1↑c2↑ + c+
1↓c2↓)

(ii) the particle–hole magnetic channel:

m0
12 =

1√
2
(c+

1↑c2↑ − c+
1↓c2↓)

m+
12 = c+

1↑c2↓
m−12 = c+

1↓c2↑

(iii) the particle–particle singlet channel:

s12 = 1√
2
(c1↓c2↑ − c1↑c2↓)

s12 = 1√
2
(c+

1↑c
+
2↓ − c+

1↓c
+
2↑)

(iv) the particle–particle triplet channel:

t012 =
1√
2
(c1↓c2↑ + c1↑c2↓)

t
0
12 =

1√
2
(c+

1↑c
+
2↓ + c+

1↓c
+
2↑)

t±12 = c1↑,↓c2↓,↑
t
±
12 = c+

1↑,↓c
+
2↓,↑.

The bare-vertex matrices corresponding to the different channels are defined as follows:

Ud
12,34 = 2 〈13|v| 24〉 − 〈13|v| 42〉

Um
12,34 = −〈13|v| 42〉

Us
12,34 =

1

2
[〈12|v| 34〉 + 〈12|v| 43〉]

Ut
12,34 =

1

2
[〈12|v| 34〉 − 〈12|v| 43〉] .

(3)
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Now we can rewrite the interaction part of the Hamiltonian of equation (1) in two equivalent
forms, corresponding to the particle–hole and the particle–particle channels:

HU = 1

2
Tr

{
d ∗ Ud ∗ d +

∑
α=0,±

mα ∗ Um ∗m−α
}

HU = 1

2
Tr

{
s ∗ Us ∗ s +

∑
α=0,±

t
α ∗ Ut ∗ tα

}
where∗ means the matrix product; e.g.,

(Ud ∗ d)12 =
∑
34

Ud
12,34d34

(d ∗ Ud)12 =
∑
34

d34U
d
34,12.

Then we may repeat the usual derivation of the FLEX equations for single-band [14] and
multi-band [13,16] cases, taking into account the spin dependence of the Green functionGσ

λλ′ :

Gσ
12(τ ) = −

〈
Tτ c1σ (τ )c

+
2σ (0)

〉
.

For finite temperature (T > 0), the FLEX equations have a ‘local form’ in the Matsubara
frequency (iωn) or imaginary-time (τ ) space (whereωn = (2n + 1)πT , n = 0,±1, . . .),
and it is very efficient to use the fast Fourier transforms (FFT) with periodic boundary
conditions [13,14]. The time and frequency spaces are connected by

Gσ
λλ′(iωn) =

∫ 1/T

0
eiωnτGσ

λλ′(τ ) dτ

Gσ
λλ′(τ ) = T

∑
ωn

e−iωnτGσ
λλ′(iωn)

and we will try to retain this dual iω–τ notation to stress the numerical implementation of this
LDA++ scheme.

An unusual feature of the spin-polarized multi-band FLEX scheme is the mixing ofm0-
andd-channels (as well ass- andt0-channels) which is related to the non-zero value of the
appropriate correlator; for example,〈〈
d12m

0
34

〉〉
c
= 1

2

〈〈
(c+

1↑c2↑ + c+
1↓c2↓)(c+

3↑c4↑ − c+
3↓c4↓)

〉〉
c
= −1

2

{
G
↑
23G

↑
41−G↓23G

↓
41

}
(4)

where subscriptc indicates a connected part of the correlator (cf. [14]). As a result, we have
the following expression for the effective-transverse-susceptibility matrix:

χ+−(iω) = [1 +Um ∗ 0↑↓(iω)]−1 ∗ 0↑↓(iω) (5)

where

0σσ
′

12,34(τ ) = −Gσ
23(τ )G

σ ′
41(−τ) (6)

is an ‘empty loop’ and0(iω) is its Fourier transform. The corresponding longitudinal
susceptibility matrix has a more complicated form:

χ‖(iω) =
[
1 +U ‖ph ∗ χ‖0(iω)

]−1
∗ χ‖0(iω) (7)

where we have introduced the supermatrix of p–h interactions:

U
‖
ph =

(
Ud 0
0 Um

)
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and the matrix of bare longitudinal susceptibility:

χ
‖
0 =

1

2

(
0↑↑ + 0↓↓ 0↑↑ − 0↓↓
0↑↑ − 0↓↓ 0↑↑ + 0↓↓

)
(8)

in the dd-, dm0-, m0d-, andm0m0-channels (d,m0 = 1, 2 in the supermatrix indices).
Similarly, for the p–p channel we have

R±(iω) = [1 +Ut ∗ R±0 (iω)
]−1 ∗ R±0 (iω)

R‖(iω) =
[
1 +U ‖pp ∗ R‖0(iω)

]−1
∗ R‖0(iω)

(9)

where the supermatrix of p–p interactions is defined as follows:

U ‖pp =
(
Us 0
0 Ut

)
and the bare p–p susceptibilities are[

R±0 (τ )
]

12,34 =
1

2

[
G
↑,↓
14 (τ )G

↑,↓
23 (τ )−G↑,↓13 (τ )G

↑,↓
24 (τ )

]
R
‖
0 =

(
Rss0 Rst0
Rts0 Rtt0

) (10)

where

5σσ ′
12,34(τ ) = Gσ

23(τ )G
σ ′
14(τ )

and [
Rss0

]
12,34 =

1

4

[
5
↑↓
12,34 +5↑↓21,34 +5↓↑21,34 +5↓↑12,34

]
[
Rst0
]

12,34 =
1

4

[
5
↑↓
12,34 +5↑↓21,34−5↓↑21,34−5↓↑12,34

]
[
Rts0
]

12,34 =
1

4

[
5
↑↓
12,34−5↑↓21,34 +5↓↑21,34−5↓↑12,34

]
[
Rtt0
]

12,34 =
1

4

[
5
↑↓
12,34−5↑↓21,34−5↓↑21,34 +5↓↑12,34

]
.

(11)

In the FLEX approximation we can calculate the electronic self-energy in terms of the
effective interactions in various channels:

6 = 6HF +6(2) +6(ph) +6(pp) (12)

where the Hartree–Fock contribution is equal to

6HF
12,σ =

∑
34

[
〈13|v| 24〉

∑
σ ′
nσ
′

34− 〈13|v| 42〉 nσ34

]
(13)

with the occupation matrixnσ12 = Gσ
21(τ → −0); this contribution to6 is equivalent to the

spin-polarized ‘rotationally invariant’ LDA +U method [17].
The second-order contribution in the spin-polarized case reads

6
(2)
12,σ (τ ) = −

∑
{3−8}
〈13|v| 74〉Gσ

78(τ )

×
[
〈85|v| 26〉

∑
σ ′
Gσ ′

63(τ )G
σ ′
45(−τ)− 〈85|v| 62〉Gσ

63(τ )G
σ
45(−τ)

]
(14)

and the higher-order particle–hole contribution reads

6
(ph)

12,σ (τ ) =
∑
34,σ ′

Wσσ ′
13,42(τ )G

σ ′
34(τ ) (15)
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with the p–h fluctuation potential matrix

Wσσ ′(iω) =
[
W↑↑(iω) W↑↓(iω)
W↓↑(iω) W↓↓(iω)

]
(16)

where the spin-dependent effective potentials are defined as follows:

W↑↑ = 1

2

{
Ud ∗ [χdd − χdd0

] ∗ Ud +Um ∗ [χmm − χmm0

] ∗ Um

+ Ud ∗ [χdm − χdm0

] ∗ Um +Um ∗ [χmd − χmd0

] ∗ Ud
}

W↓↓ = 1

2

{
Ud ∗ [χdd − χdd0

] ∗ Ud +Um ∗ [χmm − χmm0

] ∗ Um

− Ud ∗ [χdm − χdm0

] ∗ Um − Um ∗ [χmd − χmd0

] ∗ Ud
}

W↑↓ = Um ∗ [χ+− − χ+−
0

] ∗ Um

W↓↑ = Um ∗ [χ−+ − χ−+
0

] ∗ Um.

Finally, the higher-order particle–particle contribution corresponds to

6
(pp)

12,σ (τ ) = −
∑
34,σ ′

T σσ
′

13,42(τ )G
σ ′
43(τ )

with the p–p fluctuation potential matrix

T σσ
′
(iω) =

[(
T ↑↑(−iω) T ↑↓(−iω)
T ↓↑(−iω) T ↓↓(−iω)

)]
(17)

defined in terms of the spin-dependent p–p effective potentials:

T ↑↓ = Us ∗ [Rss − Rss0 ] ∗ Us +Ut ∗ [Rtt − Rtt0 ] ∗ Ur

+ Us ∗ [Rst − Rst0 ] ∗ Ut +Ut ∗ [Rts − Rts0 ] ∗ Us

T ↓↑ = Us ∗ [Rss − Rss0 ] ∗ Us +Ut ∗ [Rtt − Rtt0 ] ∗ Ur

− Us ∗ [Rst − Rst0 ] ∗ Ut − Ut ∗ [Rts − Rts0 ] ∗ Us

T ↑↑ = Ut ∗ [R+ − R+
0

] ∗ Ut

T ↓↓ = Ut ∗ [R− − R−0 ] ∗ Ut .

Note that for both p–h and p–p channels, the effective interactions, according to equations (16)
and (17), are non-diagonal matrices in spin space, in contrast to the case for any mean-field
approximation like the LSDA.

3. Local approximation

The consideration of the full non-local FLEX self-energy6ij (iω) (or the momentum-dependent
Fourier transform6(k, iω)) in the framework of realistic multi-band calculations encounters
significant computational difficulties [16]. On the other hand, the best local approximation,
which corresponds to the so-called dynamical mean-field theory (DMFT) [19], appeared to
be very effective for the calculation of the electron spectra of strongly correlated systems.
Therefore, it is reasonable to combine the FLEX approximation with DMFT rather than just
neglecting the momentum dependence in FLEX equations. In this respect, we will take into
account only on-site (Hubbard) interactions, so all of the bare vertices (equation (3)) are
diagonal in the site indexi but are matrices in the orbital indices{m}. We believe that this
self-consistent local FLEX approximation partly accounts for ‘vertex corrections’ (due to the
difference ofG andG0; see below) which are absent in the usual FLEX method. Moreover,
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it is known that even a simple second-order approximation for the self-energy combined with
the DMFT gives rather good results for the description of correlated systems—the Hubbard
splitting, ‘Kondo resonances’, etc [19].

The DMFT procedure applied to the lattice is as follows: one needs to find a self-consistent
solution of the functional equations

G−1
0 (iω) = G−1(iω) +6(iω) (18)

and

6 = 6 [G0]

where

G(iω) =
∑
k

[iω +µ− t (k)−6(iω)]−1 (19)

is the matrix (in orbital and spin indices) of the local Green function, and6 (equation (12))
is our spin-polarized multi-band FLEX solution which depends on the effective-media Green
functionG0.

We could further simplify the computational procedure by neglecting dynamical inter-
action in the p–p channel, since the most important fluctuations in itinerant-electron magnets
are spin fluctuations in the p–h channel. We take into account static (ofT -matrix type)
renormalization of the effective interactions, replacing the bare matrixU12,34 = 〈12|v|34〉 in
equations (14) and (15) with the corresponding scatteringT -matrix averaged over spins:

U = [1 +U ∗50(iω = 0)]−1 ∗ U
where50(iω) is the Fourier transform of

50
12,34(τ ) =

1

4

∑
σσ ′

Gσ
13(τ )G

σ ′
24(τ ).

In the case of the single-band Hubbard model, this approximation was found to be very
reliable [18]. The effects of the spin dependence of the effective interaction matrixU will
be considered elsewhere [20].

4. Computational results

We have started from the spin-polarized LSDA band structure of ferromagnetic iron within the
TB-LMTO method [21] in the minimal s, p, d basis set and used numerical orthogonalization
to find theHt -part of our starting Hamiltonian. We take into account Coulomb interactions
only between d states. The correct parametrization of theHU -part is a serious problem. For
example, first-principles estimations of the average Coulomb interactions (U ) [3, 22] lead to
unreasonably large values of the order of 5–6 eV, in comparison with experimental values of
theU -parameter in the range 1–2 eV for iron [3]. Semiempirical analysis of the appropriate
interaction value [23] givesU ' 2.3 eV. The difficulties as regards choosing the correct value
of U are connected with complicated screening problems, definitions of orthogonal orbitals
in the crystal, and contributions of the inter-site interactions. In the quasiatomic (spherical)
approximation, the fullU -matrix for the d shell is determined by the three parametersU , J ,
andδJ , or equivalently by effective Slater integralsF 0, F 2, andF 4 [13, 15]. For example,
U = F 0, J = (F 2 +F 4)/14, and we use the simplest way of estimatingδJ orF 4, keeping the
ratioF 2/F 4 equal to its atomic value 0.625 [24]. The total Coulomb matrix in equation (1) is
defined as

〈m1m2 |v|m′1m′2〉 =
∑
k

ak(m1, m
′
1, m2, m

′
2)F

k
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where 06 k 6 2l and

ak(m1, m
′
1, m2, m

′
2) =

4π

2k + 1

k∑
q=−k
〈lm1|Ykq |lm′1〉〈lm2|Y ∗kq |lm′2〉.

Note that the value of the intra-atomic (Hund) exchange interactionJ is not sensitive to
the screening, and is approximately equal to 0.9 eV in different estimations [22]. For the most
important parameterU , which defines the bare-vertex matrix (equation (3)), we use the value
U = 2.3 eV for most of our calculations, and discuss the dependences of the density of states
(DOS) as functions ofU . To calculate the spectral functions

Aσ (k, E) = − 1

π
TrL Gσ (k, E + i0)

and the DOS as their sums over the Brillouin zone, we first carried out analytical continuation
for the matrix self-energy from the Matsubara frequencies to the real axis using the
Pad́e approximation [25], and then numerically inverted the Green-function matrix as in
equation (19) for eachk-point. In the self-consistent solution of the FLEX equations we
used 1024 Matsubara frequencies and the FFT scheme with the energy cut-off at 100 eV.
The sums over the irreducible Brillouin zone have been performed with 72k-points for SCF
iterations and with 1661k-points for the final total density of states.

-6 -4 -2 0 2 4 6
0

1 m=2.07 µ
B U=6 eV

Energy, eV

0

1
m=2.28 µ

B U=5 eV

0

1 m=2.20 µ
B U=3 eV

D
O

S
 (

e
V

-1
) 0

1 m=2.14 µ
B U=2 eV

0

2
m=2.25 µ

B
E

F LSDA

Figure 1. The spin-resolved density of d states and magnetic moments for ferromagnetic iron in the
LSDA and the LDA++ calculations for different average Coulomb interactions withJ = 0.9 eV
and temperatureT = 1500 K.

First we analyse theU -dependence of the electronic structure (figure 1). KeepingJ , δJ
fixed as described above, we vary the averageU -parameter over the range from 2 to 6 eV. For
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computational simplicity, a relatively high temperature valueT = 1500 K was used. Note
that the temperature in this approach is defined in terms of Matsubara frequencies. In contrast
to the case for the standard LDA calculations at finite temperatures [26], we take into account
the temperature dependence of the Bose degrees of freedom through the p–h susceptibilities.
It is known [27] that this source of temperature dependence is the most important for itinerant-
electron magnets. AlthoughT is aboveT exp

C (whereT exp
C = 1043 K is the experimental value

of the Curie temperature of iron), all of the DOS (N↑(E),N↓(E)) curves in figure 1 show
spin splitting. In principle, one could calculateTC using the temperature dependence of the
uniform spin susceptibility [19], but we have not done this yet. Nevertheless, we believe that
this splitting in the DMFT is a manifestation of the existence of a local magnetic moment above
TC , and is not connected with long-range magnetic order. This spin splitting is a characteristic
feature of local approximations, and reflects the Hubbard splitting in the one-band model [18].
The local spin splitting above the Curie temperature in iron is definitely observed in many
experiments—e.g. optics and photoemission investigations (see, e.g., [4, 27] and references
therein).

First of all, we see that the value of the total magnetic moment is weakly dependent
on U , and is of the order of 2µB for this temperature. The positions of the main peaks

-8 -4 0 4 8

-1

0

1

E
F

Σ (
E

),
 e

V
Σ (

E
),

 e
V

N
(E

),
 e

V
-1

Energy, eV

Σ-eg

-1

0

1 Σ-t2g

0

1

U=2.3 eV

Figure 2. The total spin-polarized density of states and the d part of the self-energy for iron with
U = 2.3 eV andJ = 0.9 eV for the temperatureT = 750 K. Two different self-energies for t2g and
eg d states in the cubic crystal-field symmetry are presented and four different curves correspond
to the imaginary part with spin up (full curve) and spin down (dashed curve) as well as real part
with spin up (dashed–dotted curve) and spin down (dashed–double-dotted curve).
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with respect to the Fermi energy roughly coincide with those in the LSDA up toU = 2 eV.
Starting fromU = 3 eV, satellites atE ' −5 eV appear as well as additional many-body
structure atE ' 4 eV. Note that a weak satellite-like feature atE ' −5 eV was observed
experimentally in [5], although it was not found in [6]. ForU ' 1 eV, which is considered to
be the ‘experimental’ value for iron [3], there are no noticeable manifestations of this satellite.
The boundary values ofU of the order of 2 eV with a weak shoulder probably correspond
to the experimental situation best. ForU ' 5–6 eV an essential part of the spectral density
is related to the many-particle peaks corresponding to the upper and lower Hubbard bands,
which is unrealistic for such moderately correlated substances as iron. AtU ' 6 eV, the empty
quasiparticle minority-spin peak goes below the Fermi level, which decreases the magnetic
moment.

The depolarization of states near the Fermi level is another important correlation effect.
The decrease of the ratio

P = [N↑(EF )−N↓(EF )]/[N↑(EF ) +N↓(EF )]

is a typical sign of spin-polaron effects [4, 28]. In our approach, these effects are taken into
account through theW(ph)

↑↓ terms in the effective spin-polarized LDA++ potential.
The energy dependence of the self-energy in figure 2 shows characteristic features of

moderately correlated systems. At low energies,|E| < 1 eV, we see a typical Fermi-liquid
behaviour, Im6(E) ∼ −E2, ∂ Re6(E)/∂E < 0. At the same time, for the states beyond this
interval within the d bands, the damping is rather large (of the order of 1 eV), so these states
correspond to ill-defined quasiparticles, especially for occupied states. This is probably one of
the most important conclusions of our calculations. Qualitatively, this had already been pointed
out in reference [10] on the basis of model second-order perturbation theory calculations. We
have shown that this is the case for a realistic quasiparticle structure of iron with a reasonable
value of the Coulomb interaction parameter.

In view of the noticeable broadening of the quasiparticle states, a description of the
computational results in terms of an effective band structure (determined, for example, from
the maximum of the spectral density) would be incomplete. We present in figure 3 thefull-
spectral densityAσ (k, E), including both coherent and incoherent parts as a function ofk and
E. We see that in general the maxima of the spectral density (dark regions) coincide with the
experimentally obtained band structure. However, for occupied majority-spin states at about
−3 eV, the distribution of the spectral density is rather broad and the description of these
states in terms of the quasiparticle dispersion is problematic. This conclusion is in complete
quantitative agreement with the raw experimental data on the angle-resolved spin-polarized
photoemission [29] with the broad non-dispersive second peak in the spin-up spectral function
at around−3 eV.

5. Applications to spin-polarized thermoemission

One of the most unexpected results as regards the electronic structure of iron was obtained from
the spin-polarized thermoemission for caesiated iron [8]. In this case the thermal current is
determined by the states with the energyW = 1.37 eV above the Fermi level, which are in the
region of the quasiparticle DOS peak for the minority spin. One could expect a strong negative
spin polarization of the current (the polarization ratioP as estimated from the LSDA DOS is
about−85%). More accurate estimation, which takes into account group velocities [9], gives
the resultP = −34% for the polarization ratio. Experimentally, it found to be zero within the
experimental error.
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P H
k-directions

-10

-5

0

5

E
ne

rg
y 

(e
V

)

Fe spin-up

Γ P H
k-directions

-10

-5

0

5

E
ne

rg
y 

(e
V

)

Fe spin-down

Γ

(a) (b)

Figure 3. The spectral function of ferromagnetic iron for spin up (a) and spin down (b), and the two
k-directions in the Brillouin zone, compared with the experimental angle-resolved photoemission
and de Haas–van Alphen (atEF = 0) points (from reference [3]).

To clarify the situation, we considered this effect on the basis of our LDA++ calculations.
The current through the surfacex = 0 in the spectral representation is

jx =
∑
k

TrLσ

[
∂t (k)

∂kx

〈
c+
kck
〉] =∑

k

TrLσ

{
∂t (k)

∂kx

[∫ ∞
−∞

dE f (E)A(k, E)

]}
(20)

where∂t (k)/∂k = Vk is the group velocity operator (the matrix in orbital indices), andf (E)

is the Fermi distribution function. Taking into account only electrons moving towards the
surface(kx > 0) and with the energyE above the barrier(W), the thermoemission current
(cf. reference [9] for the case of non-interacting electrons) could be expressed as

jTx =
∑

k(kx>0)

∫ ∞
W

dE f (E)TrLσ

{∣∣∣∣∂t (k)∂kx

∣∣∣∣A(k, E)} . (21)

Taking into account thatT � W and averaging over the surface orientations (experiments [8]
were carried out for polycrystalline samples), we found the following approximate formula
for the polarization:

P = I↑ − I↓
I↑ + I↓

(22)

where

Iσ =
∑
i=x,y,z

∑
k

TrL

{∣∣∣∣∂t (k)∂ki

∣∣∣∣Aσ (k,W)} .
This was calculated using numerical differentiation of thet (k)matrix and summing over 1661
k-points in the irreducible part of the Brillouin zone. We obtainedP = −12%, which is to be
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compared with the value of−34% obtained from LSDA calculations [9]. The decrease ofP is
not purely an effect of damping of the quasiparticle states, but is the result of rather complicated
cancellations of s-, p-, and d-electron contributions. Therefore, one may conclude that there
is no drastic discrepancy between the experimental results [8] and the theoretical description
of the electronic structure of iron, in spite of the approximate character of our treatment of the
thermoemission problem. For a more accurate description, one needs to consider the surface
effects as well as the influence of the caesium layer on the electronic structure of iron according
to the experimental conditions.

6. Conclusions

We have proposed a general scheme for investigation of the correlation effects in the
quasiparticle band-structure calculations for itinerant-electron magnets. This approach is based
on the combination of the dynamical mean-field theory and the fluctuation-exchange approx-
imation. Application of the LDA++ method gives an adequate description of the quasiparticle
electronic structure for ferromagnetic iron. The main correlation effects in the electron energy
spectrum are the strong damping of the occupied states below 1 eV from the Fermi levelEF
and the significant depolarization of the states in the vicinity ofEF . We obtained a reasonable
agreement with different experimental spectral data (from spin-polarized photoemission and
thermoemission). The method is rather universal, and can be applied to other magnetic systems,
both ferromagnetic and antiferromagnetic.
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